Integer variables estimation problems: the Bayesian approach

F. Sansò, G. Venuti


In geodesy as well as in geophysics there are a number of examples where the unknown parameters are partly constrained to be integer numbers, while other parameters have a continuous range of possible values. In all such situations the ordinary least square principle, with integer variates fixed to the most probable integer value, can lead to paradoxical results, due to the strong non-linearity of the manifold of admissible values. On the contrary an overall estimation procedure assigning the posterior distribution to all variables, discrete and continuous, conditional to the observed quantities, like the so-called Bayesian approach, has the advantage of weighting correctly the possible errors in choosing different sets of integer values, thus providing a more realistic and stable estimate even of the continuous parameters. In this paper, after a short recall of the basics of Bayesian theory in section 2, we present the natural Bayesian solution to the problem of assessing the estimable signal from noisy observations in section 3 and the Bayesian solution to cycle slips detection and repair for a stream of GPS measurements in section 4. An elementary synthetic example is discussed in section 3 to illustrate the theory presented and more elaborate, though synthetic, examples are discussed in section 4 where realistic streams of GPS observations, with cycle slips, are simulated and then back processed.


Bayesian theory;prior and posterior probability;integer and continuous variables

Full Text:



We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X