Morphotectonics of the Mascarene Islands

R. Hantke, A. E. Scheidegger

Abstract


A study is made of the orientations (strikes/trends) of joints, valleys, ridges and lineaments, i.e. of the (potentially) morphotectonic features, of the Mascarene Islands (Reunion, Mauritius and Rodrigues) in the Indian Ocean. It turns out that a connection exists between these features on all islands. For the joints alone, the results for Mauritius as a whole agree closely with those for Rodrigues as a whole, and also partially with those of Reunion. Inasmuch as the trends of the valleys, ridges and lineaments are related to the trends (strikes) of the joints, a common morphotectonic predesign seems to be present for all features studied. The morphotectonic orientations on the island also agree closely with the trends of fracture zones, ridges and trenches in the nearby ocean bottom; which has had a bearing
on the theories of the origin of the Mascarene Islands. Generally, a hot-spot origin is preferred for Reunion, and
may be for Mauritius as well, although differing opinions have also been voiced. The dynamics of a hot-spot is hard
to reconcile with the close fit of the joint strikes in Réunion with the trends of the Madagascar and Rodrigues fracture zones. The closely agreeing joint maxima in Mauritius and Rodrigues í across the deep Mauritius trench í also agree with the trend of that trench and with the trend of the Rodrigues fracture zone. Thus, it would appear as most likely that the trends of joints and of fracture zones are all part of the same pattern and are due to the same cause: viz. to action of the neotectonic stress field.

Keywords


Mascarenes;Indian Ocean floor;neotectonics;hot spots;oceanic islands

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-4330
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X