Ionospheric storm forecasting technique by artificial neural network
Main Article Content
Abstract
In this work we further refine and improve the neural network based ionospheric characteristic's foF2 predictor,
which is actually a neural network autoregressive model with additional input signals (NNARX). Our analysis
is focused on choice of X parts of NNARX model in order to capture middle and long term dependencies. Daily
distribution of prediction error suggests need for structural changes of the neural network model, as well as
adaptation of running average lengths used for determination of X inputs. Generalisation properties of proposed
neural predictor are improved by carefully designed pruning procedure with additional regularisation term in
criterion function. Some results from the NNARX model are presented to illustrate the feasibility of using such
a model as ionospheric storm forecasting technique.
which is actually a neural network autoregressive model with additional input signals (NNARX). Our analysis
is focused on choice of X parts of NNARX model in order to capture middle and long term dependencies. Daily
distribution of prediction error suggests need for structural changes of the neural network model, as well as
adaptation of running average lengths used for determination of X inputs. Generalisation properties of proposed
neural predictor are improved by carefully designed pruning procedure with additional regularisation term in
criterion function. Some results from the NNARX model are presented to illustrate the feasibility of using such
a model as ionospheric storm forecasting technique.
Article Details
How to Cite
1.
Cander LR, Milosavljevic´ MM, Tomasevic´ S. Ionospheric storm forecasting technique by artificial neural network. Ann. Geophys. [Internet]. 2003Dec.25 [cited 2023Dec.4];46(4):719-24. Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/4371
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.