Electromagnetic monitoring of the Earth's interior in the frame of the MEM Project
Main Article Content
Abstract
The MEM Project (Magnetic and Electric fields Monitoring) was activated in the INGV Observatory of LAquila since 2004. The principal purpose of the project is to create in Central Italy a network of observatories to monitoring the electromagnetic signals in the frequency band [0.001 Hz - 100 kHz]. This band includes natural signals (magnetic pulsations of magnetospheric origin, Earth-ionosphere resonance mode signals, atmospheric noise, and so on) and artificial signals (power line emissions, VLF radio transmissions, and so on). The innovative characteristic of the project is the approach chosen to study the complex problem concerning the representation of the spatial and temporal distributions of the electromagnetic fields in the band of interest. Both the distributions can be represented by some parameters containing the locations and the characteristics of the sources of the electromagnetic signals. When all the stations will be in operation the wide-band interferometry will be applied. Combining the simultaneous observations of the electromagnetic field measured in the stations of the network, we will be able to obtain detailed information about the investigated electromagnetic sources. A new measurement system has been developed to fulfil these requirements focusing on the automation of the measurements. The system is designed for long term recording of the electromagnetic fields in a wide frequency band. In the frequency band [1Hz - 100 kHz] the three components of the magnetic field and the three components of atmospheric electric field are processed in real time using DSP (Digital Signal Processing) techniques. In the frequency band [0.001 - 25]Hz the two components of the telluric field and the three components of the magnetic field are recorded as sampled (100Hz). One of the main scientific objectives of the MEM project is the long term monitoring of the geodynamical processes, such as the earthquakes, by the calculation of the Poynting vector, and the analysis of the magnetic transfer functions and impedance tensor. In the next years this kind of analysis can be useful to underline the possible correlation between the geodynamical processes and the local magnetic field anomalies.
Article Details
How to Cite
1.
Palangio P, Di Lorenzo C, Di Persio M, Masci F, Mihajlovic S, Santarelli L, Meloni A. Electromagnetic monitoring of the Earth’s interior in the frame of the MEM Project. Ann. Geophys. [Internet]. 2008Feb.13 [cited 2023Dec.8];51(1):225-36. Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/4438
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.