Ionospheric error analysis in gps measurements

N. Crocetto, F. Pingue, S. Ponte, G. Pugliano, V. Sepe

Abstract


The results of an experiment aimed at evaluating the effects of the ionosphere on GPS positioning applications are presented in this paper. Specifically, the study, based upon a differential approach, was conducted utilizing GPS measurements acquired by various receivers located at increasing inter-distances. The experimental research was developed upon the basis of two groups of baselines: the first group is comprised of "short" baselines (less than 10 km); the second group is characterized by greater distances (up to 90 km). The obtained results were compared either upon the basis of the geometric characteristics, for six different baseline lengths, using 24 hours of data, or upon temporal variations, by examining two periods of varying intensity in ionospheric activity respectively coinciding with the maximum of the 23 solar cycle and in conditions of low ionospheric activity. The analysis revealed variations in terms of inter-distance as well as different performances primarily owing to temporal modifications in the state of the ionosphere.

Keywords


Differential GPS error sources;ionospheric errors;carrier-phase positioning;Geometry-Free Linear Combination;RTK GPS

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-4456
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X