Faulting mechanism of the Campania–Lucania 1980 earthquake, Italy, from high-resolution, 3D velocity structure, aftershock relocation, fault-plane solutions, and post-seismic deformation modeling

Main Article Content

Antonella Amoruso
Luca Crescentini
Bellina Di Lieto
Roberto Scarpa

Abstract

This study performs a detailed reconstruction of the rupture mechanism of the 1980 Campania–Lucania (southern Italy) earthquake. This is achieved by relocation of the main event through computation of fault-plane solutions of the aftershocks, P-wave velocity inversion, and analysis of post-seismic ground deformation, which provide an overall picture of the faulting mechanism. All of these data are in favor of a complex rupture mechanism, as already identified by many studies, which consists of three separate events. The present study defines a graben-like rupture, with the first event rupturing a (>20-km-long) segment of a large, high-angle, NE-dipping, SE-NW-striking, normal fault. The two successive ruptures occurred separately, the first along the southern segment, and the second along the northern segment, of a complementary SW-dipping, normal fault. This mechanism is well evidenced by the revised location of the hypocenter of the main event, and the location of the aftershocks and their fault-plane solutions, as well as by the underlying three-dimensional P-wave velocity structure. The model proposed by Amoruso et al. [2005a] that was based on the inversion of co-seismic vertical displacement data is confirmed by the present analyses, as it satisfies all of the available experimental observations, and better constrains the location and fault-plane solutions of the aftershocks, the velocity discontinuities, and the rupture observations at the surface. This conclusion is also supported by analyses of the post-seismic data.

Article Details

How to Cite
1.
Amoruso A, Crescentini L, Di Lieto B, Scarpa R. Faulting mechanism of the Campania–Lucania 1980 earthquake, Italy, from high-resolution, 3D velocity structure, aftershock relocation, fault-plane solutions, and post-seismic deformation modeling. Ann. Geophys. [Internet]. 2012Mar.6 [cited 2021Dec.4];54(6). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/4984
Section
Research Articles