Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity

Michel Parrot


Many examples of ionospheric perturbations observed during large seismic events were recorded by the low-altitude satellite DEMETER. However, there are also ionospheric variations without seismic activity. The present study is devoted to a statistical analysis of the night-time ion density variations. Software was implemented to detect variations in the data before earthquakes world-wide. Earthquakes with magnitudes >4.8 were selected and classified according to their magnitudes, depths and locations (land, close to the coast, or below the sea). For each earthquake, an automatic search for ion density variations was conducted from 15 days before the earthquake, when the track of the satellite orbit was at less than 1,500 km from the earthquake epicenter. The result of this first step provided the variations relative to the background in the vicinity of the epicenter for each 15 days before each earthquake. In the second step, comparisons were carried out between the largest variations over the 15 days and the earthquake magnitudes. The statistical analysis is based on calculation of the median values as a function of the various seismic parameters (magnitude, depth, location). A comparison was also carried out with two other databases, where on the one hand, the locations of the epicenters were randomly modified, and on the other hand, the longitudes of the epicenters were shifted. The results show that the intensities of the ionospheric perturbations are larger prior to the earthquakes than prior to random events, and that the perturbations increase with the earthquake magnitudes.


Satellite, Earthquake interactions and probability

Full Text:



We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X