Effects of solar and geomagnetic activities on the sub-ionospheric very low frequency transmitter signals received by the DEMETER micro-satellite

Mohammed Yahia Boudjada, Konrad Schwingenschuh, Emad Al-Haddad, Michel Parrot, Patrick H.M. Galopeau, Bruno Besser, Günter Stangl, Wolfgang Voller


In the framework of seismic precursor electromagnetic investigations, we analyzed the very low frequency (VLF) amplitude signals recorded by the Instrument Champ Electrique (ICE) experiment on board the DEMETER micro-satellite. The sun-synchronous orbits of the micro-satellite allowed us to cover an invariant latitude of between –65° and +65° in a time interval of about 40 min. We considered four transmitter signals emitted by stations in Europe (France, FTU, 18.3 kHz; Germany, DFY, 16.58 kHz), Asia (Japan, JP, 17.8 kHz) and Australia (Australia, NWC, 19.8 kHz). We studied the variations of these VLF signals, taking into consideration: the signal-to-noise ratio, sunspots, and the geomagnetic activity. We show that the degree of correlation in periods of high geomagnetic and solar activities is, on average, about 40%. Such effects can be fully neglected in the period of weak activity. We also find that the solar activity can have a more important effect on the VLF transmitter signal than the geomagnetic activity. Our data are combined with models where the coupling between the lithosphere, atmosphere and ionosphere is essential to explain how ionospheric disturbances scatter the VLF transmitter signal.


Earthquakes prediction, Ionospheric disturbances, Solar and geomagnetic activities, Pre-seismic electromagnetic emissions

Full Text:



DOI: https://doi.org/10.4401/ag-5463
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X