Characteristics of local earthquake seismograms of varying dislocation sources in a stratified upper crust and modeling for P and S velocity structure: comparison with observations in the Koyna-Warna region, India

Main Article Content

V. G. Krishna

Abstract

Vertical component record sections of local earthquake seismograms from a state-of-the-art Koyna-Warna digital seismograph network are assembled in the reduced time versus epicentral distance frame, similar to those obtained in seismic refraction profiling. The record sections obtained for an average source depth display the processed seismograms from nearly equal source depths with similar source mechanisms and recorded in a narrow azimuth range, illuminating the upper crustal P and S velocity structure in the region. Further, the seismogram characteristics of the local earthquake sources are found to vary significantly for different source mechanisms and the amplitude variations exceed those due to velocity model stratification. In the present study a large number of reflectivity synthetic seismograms are obtained in near offset ranges for a stratified upper crustal model having sharp discontinuities with 7%-10% velocity contrasts. The synthetics are obtained for different source regimes (e.g., strike-slip, normal, reverse) and different sets of source parameters (strike, dip, and rake) within each regime. Seismogram sections with dominantly strike-slip mechanism are found to be clearly favorable in revealing the velocity stratification for both P and S waves. In contrast the seismogram sections for earthquakes of other source mechanisms seem to display the upper crustal P phases poorly with low amplitudes even in presence of sharp discontinuities of high velocity contrasts. The observed seismogram sections illustrated here for the earthquake sources with strike-slip and normal mechanisms from the Koyna-Warna seismic region substantiate these findings. Travel times and reflectivity synthetic seismograms are used for 1-D modeling of the observed virtual source local earthquake seismogram sections and inferring the upper crustal velocity structure in the Koyna-Warna region. Significantly, the inferred upper crustal velocity model in the region reproduces the synthetic seismograms comparable to the observed sections for earthquake sources with differing mechanisms in the Koyna and Warna regions.

Article Details

How to Cite
Krishna, V. G. (2016) “Characteristics of local earthquake seismograms of varying dislocation sources in a stratified upper crust and modeling for P and S velocity structure: comparison with observations in the Koyna-Warna region, India”, Annals of Geophysics, 58(6), p. S0656. doi: 10.4401/ag-6714.
Section
Seismology