Seismic random noise attenuation using modified wavelet thresholding

Qi-sheng Zhang, Jin-juan Jiang, Jin-hai Zhai, Xin-yue Zhang, Yi-jun Yuan, Xin-wu Huang

Abstract


In seismic exploration, random noise deteriorates the quality of acquired data. This study analyzed existing denoising methods used in seismic exploration from the perspective of random noise. Wavelet thresholding offers a new approach to reducing random noise in simulation results, synthetic data, and real data. A modified wavelet threshold function was developed by considering the merits and demerits of conventional soft and hard thresholding schemes. A MATLAB (matrix laboratory) simulation model was used to compare the signal-to-noise ratios (SNRs) and mean square errors (MSEs) of the soft, hard, and modified threshold functions. The results demonstrated that the modified threshold function can avoid the pseudo-Gibbs phenomenon and produce a higher SNR than the soft and hard threshold functions. A seismic convolution model was built using seismic wavelets to verify the effectiveness of different denoising methods. The model was used to demonstrate that the modified thresholding scheme can effectively reduce random noise in seismic data and retain the desired signal. The application of the proposed tool to a real raw seismogram recorded during a land seismic exploration experiment located in north China clearly demonstrated its efficiency for random noise attenuation.


Keywords


Seismic exploration; Signal processing; Random noise; Wavelet thresholding; Threshold function

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-7097
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X