Heat and mass transfer from the mantle: heat flow and He-isotope constraints
Main Article Content
Abstract
Terrestrial heat flow density, q, is inversely correlated with the age, t, of tectono-magmatic activity in the Earth's
crust (Polyak and Smirnov, 1966; etc.). «Heat flow-age dependence» indicates unknown temporal heat sources in
the interior considered a priori as the mantle-derived diapirs. The validity of this hypothesis is demonstrated by
studying the helium isotope ratio, 3He/4He = R, in subsurface fluids. This study discovered the positive correlation
between the regionally averaged (background) estimations of R- and q-values (Polyak et al., 1979a). Such a correlation
manifests itself in both pan-regional scales (Norhtern Eurasia) and separate regions, e.g., Japan (Sano et al.,
1982), Eger Graben (Polyak et al., 1985) Eastern China rifts (Du, 1992), Southern Italy (Italiano et al., 2000), and
elsewhere. The R-q relation indicates a coupled heat and mass transfer from the mantle into the crust. From considerations
of heat-mass budget this transfer can be provided by the flux consisting of silicate matter rather than He
or other volatiles. This conclusion is confirmed by the correlation between 3He/ 4He and 87Sr/86Sr ratios in the products
of the volcanic and hydrothermal activity in Italy (Polyak et al., 1979b; Parello et al., 2000) and other places.
Migration of any substance through geotemperature field transports thermal energy accumulated within this substance,
i.e. represents heat and mass transfer. Therefore, only the coupled analysis of both material and energy
aspects of this transfer makes it possible to characterise the process adequately and to decipher an origin of terrestrial
heat flow observed in upper parts of the earth crust. An attempt of such kind is made in this paper.
crust (Polyak and Smirnov, 1966; etc.). «Heat flow-age dependence» indicates unknown temporal heat sources in
the interior considered a priori as the mantle-derived diapirs. The validity of this hypothesis is demonstrated by
studying the helium isotope ratio, 3He/4He = R, in subsurface fluids. This study discovered the positive correlation
between the regionally averaged (background) estimations of R- and q-values (Polyak et al., 1979a). Such a correlation
manifests itself in both pan-regional scales (Norhtern Eurasia) and separate regions, e.g., Japan (Sano et al.,
1982), Eger Graben (Polyak et al., 1985) Eastern China rifts (Du, 1992), Southern Italy (Italiano et al., 2000), and
elsewhere. The R-q relation indicates a coupled heat and mass transfer from the mantle into the crust. From considerations
of heat-mass budget this transfer can be provided by the flux consisting of silicate matter rather than He
or other volatiles. This conclusion is confirmed by the correlation between 3He/ 4He and 87Sr/86Sr ratios in the products
of the volcanic and hydrothermal activity in Italy (Polyak et al., 1979b; Parello et al., 2000) and other places.
Migration of any substance through geotemperature field transports thermal energy accumulated within this substance,
i.e. represents heat and mass transfer. Therefore, only the coupled analysis of both material and energy
aspects of this transfer makes it possible to characterise the process adequately and to decipher an origin of terrestrial
heat flow observed in upper parts of the earth crust. An attempt of such kind is made in this paper.
Article Details
How to Cite
1.
Polyak BG. Heat and mass transfer from the mantle: heat flow and He-isotope constraints. Ann. Geophys. [Internet]. 2005Dec.25 [cited 2023Dec.3];48(1). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3176
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.