The Italian reference site for TEM methods

Vincenzo Sapia, Andrea Viezzoli, Antonio Menghini, Marco Marchetti, Massimo Chiappini

Abstract


The success of a long term transient electromagnetic survey (TEM) rigorously calls for appropriate system calibration, in addition to advanced processing and inversion of the measured data. In fact, acquisition of TEM data can be affected by a variety of noise sources from both inside and outside the system, making it difficult, for example, to define an absolute turn off time and/or to synchronize transmitter and receiver. For these reasons, a reference site plays an important role. As first step, we performed the calibration of a Geonics 47 at the Lyngby reference site in Denmark. We then set up a new reference site using the same calibrated TEM instrument. The reference site was established in the San Rossore park area (Pisa), where we identified an area that matches the required conditions. Subsequently, a series of TEM measurements were collected in the selected area using two pre-calibrated TEM instruments: the Geonics 47 and the WalkTEM respectively. The reference responses were therefore jointly inverted, obtaining a 5 layers model that was appointed to be the TEM reference model for the site. Afterwards, based on that reference model, we calibrated the Geonics 47 and 57 instruments for a 100 x 100 m central loop configuration. A unique time-shift and a data level shift factor was calculated and applied to the TEM system as result of the calibration procedure. The San Rossore TEM reference site is now available for anyone interested in calibrating TEM systems.

Keywords


Time-domain electromagnetic method; Data calibration; Reference site; 1D resistivity model

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-6805
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X