Neural networks and dynamical system techniques for volcanic tremor analysis

R. Carniel

Abstract


A volcano can be seen as a dynamical system, the number of state variables being its dimension N. The state is usually confined on a manifold with a lower dimension f, manifold which is characteristic of a persistent «structural configuration». A change in this manifold may be a hint that something is happening to the dynamics of the volcano, possibly leading to a paroxysmal phase. In this work the original state space of the volcano dynamical system is substituted by a pseudo state space reconstructed by the method of time-delayed coordinates, with suitably chosen lag time and embedding dimension, from experimental time series of seismic activity, i.e. volcanic tremor recorded at Stromboli volcano. The monitoring is done by a neural network which first learns the dynamics of the persistent tremor and then tries to detect structural changes in its behaviour.

Keywords


neural networks;dynamical systems;time series analysis;volcanic tremor

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-3967
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X