A new approach for residual gravity anomaly profile interpretations: Forced Neural Network (FNN)

O. Osman, A. Muhittin Albora, O. N. Ucan


This paper presents a new approach for interpretation of residual gravity anomaly profiles, assuming horizontal
cylinders as source. The new method, called Forced Neural Network (FNN), is introduced to determine the underground
structure parameters which cause the anomalies. New technologies are improved to detect the borders
of geological bodies in a reliable way. In a first phase one neuron is used to model the system and a back propagation
algorithm is applied to find the density difference. In a second phase, density differences are quantified
and a mean square error is computed. This process is iterated until the mean square error is small enough. After
obtaining reliable results in the case of synthetic data, to simulate real data, the real case of the Gulf of Mexico
gravity anomaly map, which has the form of anticline structure, is examined. Gravity anomaly values from a
cross section of this real case, result to be very close to those obtained with the proposed method.


Forced Neural Network;gravity anomaly;modeling;synthetic model;Gulf of Mexico

Full Text:



DOI: https://doi.org/10.4401/ag-3099
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X