Infrared remote sensing of Earth degassing - Ground study
Main Article Content
Abstract
Geodynamical processes e.g., volcanoes, often cause degassing at the Earth surface. The geogas emanates via
mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature
of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas
vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect
should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of
gas vents/springs within large areas and short times. This article describes preparatory investigations for which
emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via
a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and
winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas
within the recorded thermal images of the scene. The investigations are aiming at studies to be performed
later in the Western Bohemia (Czech Republic) earthquake swarm region where especially CO2 of magmatic origin
from European SubContinental Mantle (ESCM) emanates.
mineral springs, water mofettes, or dry mofettes. It is assumed that the emerging gas influences the temperature
of the spring or mofette water, respectively and the surface temperature of the soil at and around the dry gas
vents. This causes a thermal anomaly in comparison to the close vicinity. Under specific conditions this effect
should be extractable from remotely acquired infrared images allowing detection, mapping and monitoring of
gas vents/springs within large areas and short times. This article describes preparatory investigations for which
emanating Earth gas was simulated by leading compressed air into the ground and releasing it in some depth via
a metal lance. The thermal effect at the surface was observed from a nearby thermovision camera in summer and
winter under varying meteorological conditions. A procedure was developed to reliably identify gas release areas
within the recorded thermal images of the scene. The investigations are aiming at studies to be performed
later in the Western Bohemia (Czech Republic) earthquake swarm region where especially CO2 of magmatic origin
from European SubContinental Mantle (ESCM) emanates.
Article Details
How to Cite
1.
Tank V, Pfanz H, Gemperlein H, Strobl P. Infrared remote sensing of Earth degassing - Ground study. Ann. Geophys. [Internet]. 2005Dec.25 [cited 2023Dec.4];48(1). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3193
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.