A three-dimensional time-dependent algorithm for ionospheric imaging using GPS

C. N. Mitchell, P. S. J. Spencer


Global Positioning System (GPS) satellite receivers provide a world-wide network of phase and group delay
measurements. The combination of two-frequency measurements can be used to derive the integral of the electron
concentration along each satellite-to-receiver path, a parameter known as the Total Electron Content (TEC). At this
stage these slant TEC data are diffi cult to interpret as they originate from a combination of a temporally changing
ionosphere and spatially changing observation geometry. In this paper TEC data are inverted to evaluate the underlying
distribution and time evolution of electron concentration. Accordingly, a new three-dimensional, time-dependent
algorithm is presented here for imaging ionospheric electron concentration using GPS signals. The inversion results
in a three-dimensional movie rather than a static image of the electron-concentration distribution. The technique is
demonstrated using simulated ground-based GPS data from actual measurement geometry over Europe.



Full Text:



DOI: https://doi.org/10.4401/ag-4373
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X