A realistic inversion algorithm for magnetic anomaly data: the Mt. Amiata volcano test
Main Article Content
Abstract
The aim of this work is the formulation of a 3D model of the Mt. Amiata volcanic complex (Southern Tuscany)
by means of geomagnetic data. This work is shown not only as a real test to check the validity of the inversion
algorithm, but also to add information about the structure of the volcanic complex. First, we outline briefly the
theory of geomagnetic data inversion and we introduce the approach adopted. Then we show the 3D model of the
Amiata volcano built from the inversion, and we compare it with the available geological information. The most
important consideration regards the surface distribution of the magnetization that is in good agreement with rock
samples from this area. Moreover, the recovered model orientation recall the extension of the lava flows, and as a
last proof of validity, the source appears to be contained inside of the topographic contour level. The credibility of
the inversion procedure drives the interpretation even for the deepest part of the volcano. The geomagnetic signal
appears suppressed at a depth of about 2 km, but the most striking consequence is that sub-vertical structures are
found even in different positions from the conduits shown in the geologic sections. The results are thus in good
agreement with the information obtained from other data, but showing features that had not been identified, stressing
the informative power of the geomagnetic signal when a meaningful inversion algorithm is used.
by means of geomagnetic data. This work is shown not only as a real test to check the validity of the inversion
algorithm, but also to add information about the structure of the volcanic complex. First, we outline briefly the
theory of geomagnetic data inversion and we introduce the approach adopted. Then we show the 3D model of the
Amiata volcano built from the inversion, and we compare it with the available geological information. The most
important consideration regards the surface distribution of the magnetization that is in good agreement with rock
samples from this area. Moreover, the recovered model orientation recall the extension of the lava flows, and as a
last proof of validity, the source appears to be contained inside of the topographic contour level. The credibility of
the inversion procedure drives the interpretation even for the deepest part of the volcano. The geomagnetic signal
appears suppressed at a depth of about 2 km, but the most striking consequence is that sub-vertical structures are
found even in different positions from the conduits shown in the geologic sections. The results are thus in good
agreement with the information obtained from other data, but showing features that had not been identified, stressing
the informative power of the geomagnetic signal when a meaningful inversion algorithm is used.
Article Details
How to Cite
1.
Faggioni O, Beverini N, Caratori Tontini F, Carmisciano C, Nicolosi I. A realistic inversion algorithm for magnetic anomaly data: the Mt. Amiata volcano test. Ann. Geophys. [Internet]. 2003Dec.25 [cited 2023Dec.8];46(3). Available from: https://www.annalsofgeophysics.eu/index.php/annals/article/view/3425
Issue
Section
OLD
Open-Access License
No Permission Required
Istituto Nazionale di Geofisica e Vulcanologia applies the Creative Commons Attribution License (CCAL) to all works we publish.
Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, so long as the original authors and source are cited. No permission is required from the authors or the publishers.
In most cases, appropriate attribution can be provided by simply citing the original article.
If the item you plan to reuse is not part of a published article (e.g., a featured issue image), then please indicate the originator of the work, and the volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a work, you must also make clear the license terms under which the work was published.
This broad license was developed to facilitate open access to, and free use of, original works of all types. Applying this standard license to your own work will ensure your right to make your work freely and openly available. For queries about the license, please contact ann.geophys@ingv.it.