First Multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles)

Rossella Di Napoli, Alessandro Aiuppa, Patrick Allard


We used a Multi-component Gas Analyser System (Multi-GAS) to measure, for the very first time, the composition (H2O, CO2, H2S, SO2) of the volcanic gas plume issuing from the Boiling Lake, a vigorously degassing, hot (T ~ 80-90°C) volcanic lake in Dominica, West Indies. The Multi-GAS captured in-plume concentrations of H2O, CO2 and H2S were well above those typical of ambient atmosphere, while no volcanic SO2 was detected (<0.05 ppm). These were used to derive the Boiling Lake plume characteristic ratios of CO2/H2S (5.2±0.4) and H2O/CO2 (31.4±6). Assuming that other volcanic gas species (e.g., HCl, CO, H2, N2, etc.) are absent in the plume, we recalculated a (air-free) composition for the sourcing volcanic gases of ~ 96.3% H2O, 3.1% CO2 and 0.6% H2S. This hydrous gas composition is within the range of published gas compositions in the Lesser Antilles region, and slightly more H2O-rich than obtained for the fumaroles of the nearby Valley of Desolation (~94.4% H2O, 4.7% CO2 and 0.8% H2S; CO2/H2S of ~5.7). We use our results, in tandem with the output of numerical simulations of gas scrubbing in the lake-water (performed via the EQ3/6 software), to derive new constraints on the degassing mechanisms at this poorly studied (but potentially hazardous) volcanic lake.


Gases, Volcano monitoring; Instruments and techniques; Volcanic risk; Geochemical data

Full Text:



We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X