First Multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles)

Main Article Content

Rossella Di Napoli
Alessandro Aiuppa
Patrick Allard


We used a Multi-component Gas Analyser System (Multi-GAS) to measure, for the very first time, the composition (H2O, CO2, H2S, SO2) of the volcanic gas plume issuing from the Boiling Lake, a vigorously degassing, hot (T ~ 80-90°C) volcanic lake in Dominica, West Indies. The Multi-GAS captured in-plume concentrations of H2O, CO2 and H2S were well above those typical of ambient atmosphere, while no volcanic SO2 was detected (<0.05 ppm). These were used to derive the Boiling Lake plume characteristic ratios of CO2/H2S (5.2±0.4) and H2O/CO2 (31.4±6). Assuming that other volcanic gas species (e.g., HCl, CO, H2, N2, etc.) are absent in the plume, we recalculated a (air-free) composition for the sourcing volcanic gases of ~ 96.3% H2O, 3.1% CO2 and 0.6% H2S. This hydrous gas composition is within the range of published gas compositions in the Lesser Antilles region, and slightly more H2O-rich than obtained for the fumaroles of the nearby Valley of Desolation (~94.4% H2O, 4.7% CO2 and 0.8% H2S; CO2/H2S of ~5.7). We use our results, in tandem with the output of numerical simulations of gas scrubbing in the lake-water (performed via the EQ3/6 software), to derive new constraints on the degassing mechanisms at this poorly studied (but potentially hazardous) volcanic lake.

Article Details

How to Cite
Di Napoli, R., Aiuppa, A. and Allard, P. (2014) “First Multi-GAS based characterisation of the Boiling Lake volcanic gas (Dominica, Lesser Antilles)”, Annals of Geophysics, 56(5), p. S0559. doi: 10.4401/ag-6277.