The 2nd to 4th century explosive activity of Vesuvius: new data on the timing of the upward migration of the post-A.D. 79 magma chamber

Raffaello Cioni, Claudia D’Oriano, Antonella Bertagnini, Daniele Andronico


We present volcanological data on the deposits of the Santa Maria Member (SMM), the eruption cycle occurred at Vesuvius (Italy) in the period between the A.D. 79 plinian and the A.D. 472 subplinan eruptions. Historical accounts report only sporadic, poorly reliable descriptions of the volcanic activity in this period, during which a stratified sequence of ash and lapilli beds, up to 150 cm thick, with a total volume estimated around 0.15 km3, was widely dispersed on the outer slopes of the volcano. Stratigraphic studies and component analyses suggest that activity was characterized by mixed hydromagmatic and magmatic processes. The eruption style has been interpreted as repeated alternations of continuous and prolonged ash emission activity intercalated with short-lived, violent strombolian phases. Analyses of the bulk rock composition reveal that during the entire eruption cycle, magma maintained an homogeneous phonotephritic composition. In addition, the general trends of major and trace elements depicted by the products of the A.D. 79 and A.D. 472 eruptions converge to the SMM composition, suggesting a common mafic end-member for these eruptions. The volatile content measured in pyroxene-hosted melt inclusions indicates two main values of crystallization pressures, around 220 and 70 MPa, roughly corresponding to the previously estimated depth of the magma reservoirs of the A.D. 79 and A.D. 472 eruptions, respectively. The study of SMM eruption cycle may thus contribute to understand the processes governing the volcano reawakening immediately after a plinian event, and the timing and modalities which govern the migration of the magma reservoir.


Stratigraphy; Explosive eruptions; Geochemical data; Magmatic volatiles; Vesuvius

Full Text:



We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).

Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X