Anomalous secular sea-level acceleration in the Baltic Sea caused by isostatic adjustment

Giorgio Spada, Marco Olivieri, Gaia Galassi

Abstract


Observations from the global array of tide gauges show that global sea-level has been rising at an average rate of 1.5-2 mm/yr during the last ~150 years [Douglas 1991, Spada and Galassi 2012]. Although a global sea-level acceleration was initially ruled out [Douglas 1992], subsequent studies [Douglas 1997, Church and White 2006, Jevrejeva et al. 2008, Church and White 2011] have coherently proposed values of ~1 mm/year/century [Olivieri and Spada 2013]. More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, these could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise [Gehrels and Woodworth 2013], while locally they result from ocean circulation anomalies, steric effects and wind stress [Bromirski et al. 2011, Merrifield 2011]. Although isostatic readjustment affects the local rates of secular sea-level change [Milne and Mitrovica 1998, Peltier 2004], a possible impact on regional acceleration has been so far discounted [Douglas 1992, Jevrejeva et al. 2008, Woodworth et al. 2009] since the process evolves on a millennium time scale [Turcotte and Schubert 2002]. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration.


Keywords


Sea-level change; Glacial isostatic adjustment; Rheology

Full Text:

PDF

References


DOI: https://doi.org/10.4401/ag-6548
We use cookies to ensure that we give you the best experience on our website. If you continue to use this site we will assume that you are happy with it (Read more).
Ok


Published by INGV, Istituto Nazionale di Geofisica e Vulcanologia - ISSN: 2037-416X